Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 176: 105973, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663560

RESUMEN

The growing incidence of Clostridium difficile associated diarrhea (CDAD) underscores the urgency for potent treatments. This research delves into the therapeutic potential of Scutellaria baicalensis Georgi (Lamiaceae) root (SR) in addressing CDAD and its influence on gut microbiota. Using a CDAD mouse model and fidaxomicin as a control, SR's impact was measured through diarrhea symptoms, colonic histopathology, and C. difficile toxin levels. Employing the PacBio platform, 16S rRNA full-length gene sequencing analyzed the gut microbial composition and the effect of SR. Results revealed SR considerably alleviated diarrhea during treatment and restoration phases, with a marked decrease in colonic inflammation. C. difficile toxin levels dropped significantly with SR treatment (P < 0.001). While SR didn't augment gut microbiota's overall abundance, it enhanced its diversity. It restored levels of Proteobacteria and Bacteroidetes, reduced Akkermansia spp. and Enterococcus spp. proportions, and modulated specific bacterial species' abundance. In essence, SR effectively mitigates CDAD symptoms, curtails inflammatory reactions, and beneficially restructures gut microbiota, suggesting its potential in advanced CDAD clinical intervention.

2.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382653

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Asunto(s)
Melanoma Experimental , Monofenol Monooxigenasa , Animales , Ratones , Melaninas/metabolismo , Pez Cebra , alfa-MSH/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico
3.
Phytomedicine ; 118: 154958, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453192

RESUMEN

BACKGROUND: As one of the most commonly used folk medicines in "Dai" ethno-medicine system, Alstonia scholaris (l.) R. Br. has also been used for treat "water related diseases", such as chronic kidney disease. However, few study was reported for it on the intervention of chronic glomerulonephritis (CGN). PURPOSE: To investigate the effect and potential mechanism of indole alkaloids from A. scholaris leaves in ICR mice with adriamycin nephropathy, as well as providing experimental evidence for the further application. METHODS: ICR Mice were selected for injections of adriamycin (ADR) to induce the CGN model and administered total alkaloids (TA) and four main alkaloids continuously for 42 and 28 days, respectively. The pharmacological effects were indicated by serum, urine, and renal pathological observations. The targets and pathways of indole alkaloids on CGN intervention were predicted using the network pharmacology approach, and the immortalized mice glomerular podocyte (MPC5) cells model stimulated by ADR was subsequently selected to further verify this by western blotting and RT-qPCR methods. RESULTS: TA and four major compounds dramatically reduced the levels of urinary protein, serum urea nitrogen (BUN), and creatinine (CRE) in ADR - induced CGN mice, while increasing serum albumin (ALB) and total protein (TP) levels as well as ameliorating kidney damage. Moreover, four alkaloids effected on 33 major target proteins and 153 pathways in the CGN, among which, PI3K-Akt as the main pathway, an important pathway for kidney protection by network pharmacology prediction, and then the four target proteins - HRAS, CDK2, HSP90AA1, and KDR were screened. As a result, Val-and Epi can exert a protective effect on ADR-stimulated MPC5 cells injury at a concentration of 50 µM. Furthermore, the proteins and RNA expression of HRAS, HSP90AA1, and KDR were down-regulated, and CDK2 was up-regulated after the intervention of Val-and Epi, which were supported by Western blotting and RT-qPCR. Additionally, Val-and Epi inhibited ROS production in the MPC5 cells model. CONCLUSION: This study is the first to confirm the potential therapeutic effect of alkaloids from A. scholaris on CGN. TA with major bioactive components (vallesamine and 19­epi-scholaricine) could exert protective effects against the ADR-induced CGN by regulating four key proteins: HRAS, CDK2, HSP90AA1, and KDR of the PI3K-Akt pathway.


Asunto(s)
Alcaloides , Alstonia , Glomerulonefritis , Ratones , Animales , Ratones Endogámicos ICR , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Alcaloides Indólicos/farmacología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Glomerulonefritis/inducido químicamente , Glomerulonefritis/tratamiento farmacológico
4.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677863

RESUMEN

Benign prostatic hyperplasia (BPH) is a chronic disease that affects the quality of life of older males. Sinomenine hydrochloride (SIN) is the major bioactive alkaloid isolated from the roots of the traditional Chinese medicinal plant Sinomenium acutum Rehderett Wilson. We wondered if the SIN administration exerted a regulatory effect on BPH and its potential mechanism of action. Mice with testosterone propionate-induced BPH subjected to bilateral orchiectomy were employed for in vivo experiments. A human BPH cell line (BPH-1) was employed for in vitro experiments. SIN administration inhibited the proliferation of BPH-1 cells (p < 0.05) by regulating the expression of androgen-related proteins (steroid 5-alpha reductase 2 (SRD5A2), androgen receptors, prostate-specific antigen), apoptosis-related proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax)) and proliferation-related proteins (proliferating cell nuclear antigen (PCNA), mammalian target of rapamycin, inducible nitric oxide synthase) in vitro. SIN administration decreased the prostate-gland weight coefficient (p < 0.05) and improved the histological status of mice suffering from BPH. The regulatory effects of SIN administration on SRD5A2, an apoptosis-related protein (Bcl-2), and proliferation-related proteins (PCNA, matrix metalloproteinase-2) were consistent with in vitro data. SIN exerted a therapeutic effect against BPH probably related to lowering the SRD5A2 level and regulating the balance between the proliferation and apoptosis of cells. Our results provide an important theoretical basis for the development of plant medicines for BPH therapy.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Apoptosis , Proliferación Celular , Colestenona 5 alfa-Reductasa/metabolismo , Metaloproteinasa 2 de la Matriz , Proteínas de la Membrana , Extractos Vegetales/farmacología , Antígeno Nuclear de Célula en Proliferación , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Calidad de Vida , Testosterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...